A+ R A-


Microinnova participates in EIC Corporate Day with Merck

Two weeks ago we presented our technologies and capabilities in the fields of process intensification, continuous manufacturing and flow chemistry to some of Merck’s executives at the Merck Corporate Day, funded by the European Innovation Council. A detailed discussion was conducted with Merck Millipore in order to identify more potential applications of continuous manufacturing within Millipore.


Microinnova Sponsors Award for Outstanding Process Intensification Work Towards CO2 Reduction

We were honored to have the opportunity to sponsor the 2021 EFCE Excellence Award in Process Intensification! The recipient of this award was Dr. Evangelos Delikonstantis whose Ph.D. work, titled “Plasma-Assisted Non-Oxidative Methane Coupling to Olefins”, looked into how methane can be converted to ethylene using a nanosecond pulsed plasma. Dr. Kirschneck, who presented the award, and Dr. van Gerven, who is the chairman of the working party “Process Intensification”, were very interested in Dr. Delikonstantis’ subsequent presentation. He noted that beyond the non-oxidative methane coupling to ethylene, the findings demonstrate the potential of nanosecond pulsed plasma for catalysis and should pave the way to other important chemical conversion reactions. If powered by renewable electricity, the process could pave the way for novel low-carbon ethylene production processes, with an estimated carbon footprint of 1.3kg of CO2-equivalent per kilogram of ethylene.  

More infos on this outstanding work in this press release.



Intensification Boost for Enzymatic Liquid/Gas Processes by means of Continuous Flow Processing


O2-dependent biotransformation reactions have proven difficult in fine chemical manufacturing due to the mass transfer limitations of supplying O2 to the enzymatic reaction, hence affecting the level of efficiency achieved. Previous research has shown that enzymatic processes involving gases have a high potential for process intensification by implementing continuous flow processing technology.


In a cooperation between acib and Microinnova Engineering GmbH, with more than 15 years of experience in flow chemistry it has been proven that process intensification can be applied using continuous flow processing. This technology offers a comprehensive solution with a pressurized system that results in a significantly higher level of dissolved oxygen. A continuous flow reactor pressurized to 34 bar enables biotransformation to be conducted in a single liquid phase and significant increase of enzymatic activity was detected already at 10 bar. For glucose oxidase, the intensification factor for enzyme activity was up to 2.5 and amino acid oxidase showed an intensification factor up to 6 for the enzyme activity. High product concentration has been demonstrated with the concentration being 6 to 10 times higher at 34 bars compared to atmospheric pressure. See also Bolivar J.M., Mannsberger A., Thomsen M.S, Tekautz G., Nidetzky B. (2019) Biotechnology and Bioengineering, 116(3), 503–514.

Find out more in this acib newsletter!

Corning and Microinnova Celebrate Opening of Advanced-Flow™ Reactor Qualified Lab

Corning Incorporated and Microinnova recently celebrated the opening of the Corning® Advanced-Flow™ Reactors (AFR) Application Qualified Lab (AQL) at their facility near Graz. Application qualified labs enable AFR customers to effectively access continuous-flow demonstrations, experimental trials, feasibility testing, and chemical reaction process development.

Corning currently has one other AQL in Europe at the University of Liège, which opened in 2017, as well as several operational AQLs worldwide that support the business. These regional facilities provide customers with convenient access to AFR Technology.

Microinnova is an innovation-based company focused on process development, design, and the realization of continuous pilot lines and manufacturing plants. Based on their critical parameter approach, Microinnova intensifies synthesis, as well as work-up and formulation processes using a wide range of different technologies leading to high-performance processes.

Microinnova has recently established a fluorine lab at their facility in Graz and are utilizing Corning’s G1 Silicon Carbide (G1 SiC) reactors to process highly toxic and corrosive chemicals in an inherently safer, more efficient way that can help customers in pharmaceutical, fine and specialty chemicals industries create a better end product.

“We’ve worked closely with Microinnova over the last few years, and the core values of innovation and commitment to inherently safer continuous flow chemistry really makes this collaboration a great fit for both companies,” said Alessandra Vizza, regional business director, Corning® Advanced-Flow Reactors. “Corning’s equipment and materials enable more stable reactions and can reduce inherent risks associated with handling/processing hazardous chemicals – which is really what the core of AFR Technology is all about.”

The location of this laboratory will help Microinnova provide broader reach to their customer base within the pharmaceutical, fine and specialty chemicals industries in Europe.

“We operate to strengthen our capabilities in the fields of fast, exothermic or highly corrosive processes for development as well as for manufacturing plant realization as a system integrator,” said Dr. Dirk Kirschneck, strategic director, Microinnova. “Based on the strong collaboration between the two companies since 2007, we are looking forward to continuing to work with Corning on future programs as one of their Application Qualified Labs.”

In addition to its AQLs, a critical part of the AFR business’ model for more than a decade has been its commitment to educating the regions where it operates.

“In Europe, we’re actively trying to educate both at the academic and industrial level on the value of continuous flow technology,” Alessandra said. “We’re hopeful that our broad product offerings as well as collaborations with companies like Microinnova will help us in this effort.”